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Rank Reduction of Ill-Conditioned Matrices
in Waveguide Junction Problems

DOUGLAS N. ZUCKERMAN, MEMBER, IEEE, AND PAUL DIAMENT, MEMBER, IEEE

Abstract—A new low-rank spectral expansion technique for solving
the ordinarily intractable matrix equations obtained from waveguide

field equivalence theorem decompositions is described. The method

facilitates tbe analysis of waveguide discontinuity problems that resist

ordinary methods of solntion. The technique is illustrated for the problem

of scattering at a slant interface in a rectangular waveguide.

I. INTRODUCTION

T

HE integral equations, and the corresponding matrix

equations, that represent scattering at a waveguide

discontinuity often exhibit ill-conditioned behavior. This

results in computational difficulties as inversion of such

matrices is inaccurate for even large-order truncated versions

of the matrix. It is shown here, however, that it may be

\
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possible to take advantage of the often relatively low

effective rank of the ill-conditioned portion of the matrix

to overcome such difficulties.

In the following, a typical problem, that of scattering

at a waveguide discontinuity, is solved by developing

equations that are exact but ill conditioned. First, field

equivalence theorems are used to reduce the structure to two

uniformly filled waveguides with equivalent electric and

magnetic current sheets at the discontinuity surface.

Integral equations for the current sheets are then derived,

using the null field condition in the two simpler waveguide

structures. By writing series expansions for the current
sheets, the integral equations are reduced to a system of

linear algebraic equations for the current expansion co-

efficients. These exact equations are asymptotically ill

conditioned. By a low rank spectral decomposition of the

matrix representing the ill-conditioned portion of the

equations, it is possible to solve for the currents without
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Fig. 1. Top view of rectangular waveguide traversed by slanted Fig. 2. Equivalence theorem decomposition into two waveg~des with
interface between two media. equivalent sources at the interface. The waveguides can be con-

sidered to be filled homogeneously.

inverting a large ill-co~ditioned. matrix, while not ignoring

high-order terms. The scattered fields are then readily

obtained from the currents.

The new technique of matrix spectral expansion is illus-

tfiated. by solving the problem of scattering at a slant

interface in a rectangular waveguide. This problem has

recently received attention in the literature. Chow and Wu

[~] solve the problem by using a moment method with

mixed basis functions. De Jong and Offringa [2] use the

Greep’s function for the waveguide to derive integral

equ~ions for the fields at the interface. Kashyap [3] solves

for ~the scattered fields by using a geometrical optics

approximation for the field on the interface. In the analysis

presented here the waveguide, ,structure shown in Fig. 1 is

decomposed, via field equivalence theorems, into two

simpler structures tliat are easier to analyze. A large-order

ill-conditioned matrix is obtained in the analysis. The

inversion of this matrix is reduced through spectral de-

composition’ to the inversion of a well-conditioned low-

order matrix.

II. THEORY

Fig. 1 shows a t~p view of a rectangular waveguide whose

broad dimension is traversed.by a slanted interface between

two media. The structure is considered to be two waveguides

joified at the slanted plane. Each waveguide has its own co-

ordinate system, as shown. The structure has no variation

with respect to yl. The modes for the waveguides on each

side of the interface are expressed by Elm+, Hlmk, where 1is

the waveguide region number (1 or 2) and m is the mode

number.

The incident field is given by the modal amplitude

coefficients al~ for waveguide 1 as

(1)

while the scattered fields are given by the scattered modal

amplitude coefficients bl~ in both waveguides as

E,l = ~ bl~El~-(xl,yt,zJ. (2)
~=1

The solution of this reflection-transmission problem for the

scattering coefficients is considerably more complex than

that of excitation of the homogeneous waveguides by given

current sources, but the former can be reduced to the latter

by use of field equivalence theorems.

An exhaustive development of field equivalence theorems

appears in the literature [4]–[14]. Love’s equivalence

theorem [6], or Huygen’s principle [9]–[12], allows the

replacement of the discontinuity problem on the left side of

Fig. 2 by the superposition of the pair of configura-

tions on the right side, much like Thevenin’s theorem

replaces portions of a network by equivalent sources. In

each of the pair, the fictitious electric and magnetic current

sheets on the interface, J and &f, must be equal to the

discontinuities in the tangential fields, from the actual

fields on one side to zero on the other. A superposition of

these two configurations and fields clearly yields the original

one. Considering the equivalent current sheets in each

problem on the right side of the figure as sources, they are

seen to radiate fields on one side that are the same as those

actually scattered by the discontinuity, but the two current

sheets also radiate a field that exactly cancels the total field

on the other side.

The importance of the null field regions of the two

structures on the right side lies in that they may be replaced-

with any media whatsoever without affecting the radiated

fields. Specifically, the null field regions can be replaced

with the, same media as on the other sides of the equivalent

currents, as shown in the figure. The solution for the fields

of the original structure has thus been made equivalent to

that for the two homogeneous waveguide problems shown,

except that the current sheets are not yet known. The sources

J and M are to be found from the condition that they

produce the null fields to one side in each problem, Once J
and M are known, the scattered fields may be found in

terms of them.

To derive equations for J and M it is sufficient to require

them to radiate null fields to the right of plane PI and to the

left of plane P2. This further simplification is valid because

there are no sources or discontinuities between the current

sheets and the planes PI or Pz, so that the simplified

condition still assures a null field throughout the entire

region. The positions of PI and Pz are not unique, but are

conveniently chosen outside the sourced region and trans-

versely across the waveguides so that the null field con-

dition is satisfied by requiring all modal amplitudes radiated

away from the currents into the null field regions to vanish

at these planes. These constraints represent an extended

boundary condition for the problem [15], [16].

The modal amplitudes generated by the equivalent

currents and by the incident field are readily obtained for

homogeneous waveguides by using the Lorentz reciprocity
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theorem [5]. Setting these amplitudes equal to zero yields The unknown current coefficient vector c is then given in’

the following equations for the current sheets: terms of the incident modal amplitude vectors by

J
– $- [E,m- .(– J) – H,m- . (–M,)] dS + al. = O

lm S

J

– # [l?,m .(+,7) – H,m- “(+ M)] dS ❑= O (3)
2m S

where the integrations span the surface of discontinuity and

the normalizing modal power factor is given by the known

integrals of the normal modes over the waveguide cross

sections

Plm = 2
J

elm x Arm “ dS,
s,

The scattered fields may be found once J and Mare known

by again applying the Lorentz reciprocity theorem.

J
bl. = - # [E1~+ .(-J) - H,m+ .(-M)] dS

Im S

J

b2. = – ~~ s [E,m+ .(+J) - H2m+ (+ M)] dS.

(4)

One way of handling the integral equations (3) for the

unknown current sheets J, M is to convert them to simul-

taneous linear equations for the coefficients of series

expansions for the unknowns. Upon selecting any suitable

set of basis functions J.(x), M.(x), series expansions may

be written for J and M. Substitution of these expansions

into (3) then yields a system of linear algebraie equations

for the current expansion coefficients j. and mn, as in

J(x) = ~ jnJn(x)
“=1

M(x) = ~ n’lnil’qx). (5)
n= 1

The resultant system of linear algebraic equations for the

current expansion coefficients can be written in matrix

form as

Gc=s (6)

where c comprises the current expansion coefficients, s has

the incident modal amplitude coefficients, and the infinite-

order matrix G can be partitioned as

with components

J

E ‘“JndS
G1.(m,n) = ‘M

s P lm

Glh(m,n) = –

J

HI.- “ M
n dS

s P lm

(7)

(8)

(9)

(lo)
J

E ‘“Jnds
Gz.(m,n) = 2m

s P 2m

J

H ‘+ fndS
G2h(m,n) = – ‘m

P“
(11)

s 2m

which formally requires the inversion of the infinite-order

matrix G.

The choice of current expansion functions in (5) is

arbitrary but affects the convergence of the infinite sums.

To arrive at a useful choice, note from the equivalent

problems in Fig. 2 that J and AZ will be proportional,

respectively, to magnetic and electric fields tangential to the

discontinuity surface, For the purpose of illustrating the

solution technique, assume that only TE.O modes are

incident. Then since the structure has no y variation, only

TE.O modes will be scattered. The electric field is along ~

and therefore M is along f. The magnetic field is in the

plane orthogonal to j and therefore J is along j, The

electric field vanishes at the waveguide walls at x = O and

x = a/sin 6. It is thus reasonable to choose

M“(x) = sin [nz(x/a) sin (YJ? (13)

where n is a positive integer. The magnetic field does not

vanish at the walls. However, the modes used to expand the

field do have a sinusoidal dependence along the discon-

tinuity. Thus choose

Jn(x) = cos [mc(x/a) sin fl]j (14)

where n is a positive integer or zero. Note that this choice

of expansion functions is by no means the only choice, nor

necessarily the best choice. Another reasonable choice

might be the forward- and reverse-going modes of either or

both waveguides on each side of the discontinuity. The

analysis below demonstrates that the ill conditioning

that may arise from injudicious choices of expansion func-

tions can be dealt with effectively by rank reduction.

Substitution into the integrals for G yields

Gle(m,n) = (– l)md@(aYl~)- ‘j212(m,rz, – ~lJ (15)

G1h(m,n) = (– l)m#’(Y1*/a)l/2 “ [sin OIl(m,n, – /?l~)

– j(Pl~/&~) cos o~z(n,~, – h)] (16)

G2=(m,n) = (aYz~) – 1’212(m,n, + /12~) (17)

G2h(m,n) = – (Y2Ju)112” [sin Wl(m,n, + /?2~)

+ j(pZ~/&) cos 6L(n,m, +/LJl (18)

where Y~~ is the modal admittance, @ = ~l~a cot 6, pl~ is

the cutoff wavenumber for the mth mode, and

J
ajsin O

z~(rn,n,p) = sin [rnn(x/a) sin 6]
o

“ sin [nn(x/a) sin O]ejPx ‘Ose dx (19)

f

a/sin 9

12(m,n,~) = sin [m7c(x/a) sin 0]
o

“ cos [nn(x/a) sin O] ei~x ‘O’ o dx. (20)
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The integrals may readily be evaluated in closed form, with and the solution readily extended to include the additional
the following results: sources,

11(m,n,/3) = j(j3/2) cbs OR~~[S~~’ – S’~~-]
One approach to the inversion problem is to ignore

’21) higher order terms entirely. If G is severely truncated to

12(m,n,~) = (n/2a) sin 131?~~[Tm~++ T~~-] (22) merely A, a “crude solution p’ for the first- few unknown

where
current expansion coefficients p is given by

&n = 1 _ (_ l)m+n~”/la coto (23) p’ = A-lV. (27)

Sm.* = {[(m + n)(z/a) sin 0]2 – (B cos f3)2} -i (24) This is to be compared with the exact solution for all the

T~.* = (m + n)S~.*. (25)
unknown current expansion coefficients, expressible in

terms of the partitions A, B, C, D as
The infinite-order matrix G remains to be inverted, but

truncated versions of this matrix are found to be ill con-

ditioned and require special treatment.

p = (A – BD-lC)-lY

( – BD-lC)”lr.q = –D-lC A (28)

III. ILL-CONDITIONED MATRICES

Because of the behavior of the matrix elements for large

values of m or n, the matrix G is ill conditioned. This is

traceable to the properties of the integrals ]1 and 12. For

evanescent modes, /31~ = –jctl~ approaches –j(mn/a) for

large m. Except for the special case of 6’ = 9T, the very

steeply rising exponential envelope which multiplies the

two sinusoids in the integrands prevents the rapid decay of

the integrals as m and n get larger and more separated from

each other. In addition, the value of It or 12 will not vary

much within a small range of large m or n, since the ex-

ponential factor in the integrand counteracts the tendency

of the sinusoidal factors to be orthogonal.

To solve (6) exactly for the unknown current coefficient

vector, G must be inverted. The direct inversion of this

matrix, or of finite-order truncated versions of G, is not

practical, especially for large order, because of its ill

conditioning. However, as will be shown, a low-rank spectral

decomposition can be applied to G to avoid the inversion of

a large-order matrix.

We rearrange and partition G to rewrite Gc = s so as to

segregate low-order modes and expansion functions froni

the presumably less important high-order ones, in the form

(26)

not as in (7), which separated electric and magnetic com-

ponents for purposes of evaluating G. A is a square matrix

obtained by keeping only the first few low-order terms in

the expansion for both J and M and requiring that only the

first few modes of waveguides 1 and 2 satisfy the null-field

condition at planes PI and P2. D is an infinite-order ill-

conditioned submatrix, corresponding to only high-order

modes and expansion functions; B relates low-order modes

to’ high-order expansion ftinctions, and vice versa for C.

The vector of current expansion coefficient c is corre-

spondingly partitioned into p, containing the first few

coefficients, and q for the higher order odes. The known

incident modal amplitude vectors is partitioned as r and the

null vector since, for a single low-order incident mode, s and

also r have only’ one nonzero element. For more general

excitations, s may be partitioned into two nonzero parts

If even an approximate inverse of submatrix D were

available, (28) would provide solutions for p, q that do not

completely ignore the high-order modes, as does (27). An

obvious approach is to truncate D. However, since D is ill

conditioned, D-1 cannot be readily evaluated, especially

when D is of high order. The desired improvement to the

crude solution given by (27) may nevertheless be obtained,

by spectrally decomposing D.

The spectral decomposition of D, truncated to an

N x N matrix, is given by [17]

(29)

in terms of its eigenvalues A and orthonormal eigenvectors

e, UT; T denotes transposition. D is ill conditioned but not

singular. Now assume that a good approximation for D

is obtained by using only the first K largest eigenvalues in

the expansion (29], with K < N. K is to be the approximate

rank of D, If K were the exact rank of D, then K eigenvalues

would exactly represent D. Accordingly, an approximate

expression for D may be written as

D=fg (30)

where the matrices f, g are formed from the eigenvectors

of D:

f = [21e1,2.2e2, ” * “ ,a~e~]

g = [U1,U2, “ “ “,UK]=. (31)

The matrices f and g are N x K and K x N, respectively.

Within the approximation that q is in the space spanned by

matrix f, substitution of (30) into (26) leads to the solution

P = [A – Bf (gf )- 2gC] - %

!2 = –f (gf)-2gC[A – Bf (gf)-2gC] - lr. (32)

This result accounts for the high-order modes, to the

extent that they can be expanded in the K retained eigen-

vectors of D.

Note that neither the ill-conditioned matrix D nor its

singular approximation fg needs to be inverted for this

solution. The problem of inverting the large-order matrix D

has been reduced to that of inverting a much lower order
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matrix gf, which is K x K instead of N x N and is not

ill conditioned.

There are numerous standard methods which may be

used to find the eigenvalues and eigeuvectors of D needed

in the spectral decomposition. One method transforms D

to an upper Hessenberg matrix and then computes the

eigenvalues using the QR double-step procedure. The

eigenvectors are then found by performing inverse iteration

on the Hessenberg matrix [18]–[20]. There also exist

various iterative schemes which find only the first K largest

eigenvalues and corresponding eigenvectors [1 8], [21].
The quantity D- = f($zf)-’g appearing in 1(32) is the

group inverse of D [22]. The group inverse is one of

several pseudoinverses that could be used in this context.

Another one is generated by the singular-value decomposi-

tion [22]–[24], which yields the minimum-norm least

squares inversion. It is closely related to the following

modification, designed to enhance the ratio of magnitudes

of the K retained eigenvalues to those of the N – K

neglected ones. If the second equation in (26) is pre-

multiplied by D+, where D+ is the complex conjugate

transpose of D, there results

(33)

Observe that D+D is a Hermitian matrix. This matrix

equation is of the same form as (26) and the same analysis

is applicable in solving for p and q. For Hermitian matrices

factored as in (30), with gf nonsingtdar, the group inverse

becomes the Moore-Penrose inverse. A solution to (33)

obtained using this inverse involves a minimum-norm least

square solution for q in terms of p. This solution can be

shown to be unique. It always exists even though the

equation being solved may be inconsistent or have families

of solutions [22]–[24]. A disadvantage of this modification

is the reduced numerical accuracy of D+ D compared to

that of D. This can be overcome by applying the singular-

value decomposition directly to the non-Hermitian matrix

D [25].

The accuracy of the solution is related to that of the

factorization approximation of D or D+D. In ortier to have

a good rank-K approximation for D or D ‘D, the first K

eigenvalues should have much larger magnitudes than the

N – K remaining ones. Even if this condition is met, the

approximate solution for p and q may still be significantly

different from the exact, unattainable solution. This would

occur if D+ Cp were to have significant components along

any of the N – K neglected eigenvectors of D+D, or

if r could not be resolved in the space spanned by A –

B(D+D) -C in (32). However, the quantities ultimately to

be determined are the scattered mode amplitudes of (4).
Thus an examination of the scattered fields will indicate

whether the solution for the current expansion (coefficients

has sufficient accuracy. The scattered fields should satisfy

basic physical principles such as power conservation and

reciprocity. A further discussion of the accuracy of the

procedure appears below in connection with some numerical

results.

IV. NUMERICAL RESULTS

The analysis of Sections II and III has been applied to

the waveguide slant discontinuity shown in Fig. 1, with

6 = 45°. The relative dielectric constants of the media

filling the waveguides on the left and right sides of the

discontinuity were taken as&l = 1 and E2 = 3, respectively.

For a unit-amplitude TEIO mode incident from ZI = – co,

the scattered amplitudes of the propagating modes on both

sides of the discontinuity were computed for 1 < f /fc <

1.732, where fC is the TEIO cutoff frequency in that wave-

guide in which the TEIO mode is incident. At the highest

frequency considered, both the TEIO and TE20 modes

propagate to the right of the discontinuity, but only the

TEIO mode propagates to the left.

The solution procedure can be summarized as follows.

Based upon known solutions to the scattering problem,

truncating Gin (6) to a 16 x 16 matrix is essentially equiv-

alent to leaving it of infinite order. Examination of the

portion of G corresponding to large m and n reveals that it

is approximately of rank 4; the first four eigenvalues of

D+ D have much larger magnitudes than the remaining

ones. For example, for f /fC = 1.1, the four largest eigen-

values were 0.660, 0.539, 0.0284, and 0.018. The fifth

eigenvalue was 0.000843, and the remaining ones were all

much smaller than this one. These eigenvalues were com-

puted using an iterative technique [18]. If the approximation

is made that D ‘D is exactly rank 4, then gf in (32) will be

4 x 4. In (26) or (33) A can conveniently be made 4 x 4,

so that the largest matrix that needs to be inverted is only

4x4.

The magnitudes of the reflected and transmitted pro-

pagating modes are given in Fig. 3. Fig. 4 shows the total

power carried by the scattered modes. Three sets of solu-

tions are shown in the figures. One set is for the severely

truncated equations represented by (27). Another set is for

the spectrally decomposed D+D matrix with solutions for

p and q as represented by (32). The third set of solutions is

the exact one obtained either from De Jong and Offringa

[2] or from (28) by directly inverting D. The results ob-

tained by inverting only A disagree with the correct ones by

as much as a factor of 2 and power conservation is violated

by up to 30 percent. However, the errors of the corrected

results, assuming D+D is rank 4, are of the order of 5

percent, no worse than 20 percent, and power conservation

is satisfied to within 4 percent. This represents a significant

improvement over the severely truncated case.

A limitation to the analysis occurs if the frequency

becomes too high or if the dielectric constant discontinuity

becomes too great. Then the equivalent current sheets are

expected to have many variations along the discontinuity

plane, and a large number of terms may be needed in the
expansions for the current sheets given by (5). It might

then be appropriate to choose a better set of current

expansion functions, or perhaps to use a geometrical optics

approximation for the currents.

The accuracy or reliability of the solution process is not

predictable in general but is subject to certain numerical
checks. Besides monitoring how well power conservation
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Fig. 3. (a) Magnitude of. reflection coefficient for TE10 mode.
(b) Magnitude of transmmlon coeffiaent for TE,0 mode. (c) Magni-
tude of transmission coefficient for TEZOmode. The exact solution is
given by a dotted line, the severely truncated solution by a dashed
line, and the low-rank correction by a solid line.

and reciprocity are satisfied, the convergence of the results

with increasing values of the reduced rank K and with

increasing order of the truncated matrix A can and should

be verified. Comparisons were made with the solutions

obtainable by direct inversion of large-order versions of

the G matrix. Typically, a rank-reduced 4 x 4 inversion

agreed with a direct inversion of a 16 x 16 matrix to

within 5 percent. It should be noted that, in accordance
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Fig. 4. Total scattered power as fraction of incident power. The exact
solution is given by a dotted line, the severelytruncated solution by
a dashed line, and the low-rank correction by a solid line.

with the variational principle that governs the scattering.

calculations [26], the results for the reflection and trans-

mission coefficients are more accurate than those for the

equivalent current sources.

v. sukm’rmY

The problem of scattering at a waveguide discontinuity

was solved by using field equivalence theorems to reduce

the structure to two uniformly filled waveguides with

equivalent electric and magnetic current sheets at the dis-

continuity stirface. Integral equations for the current sheets

were derived using the null-field condition in the two

simpler homogeneous structures. By writing series ex-

pansions for the current sheets, the integral equations were

converted to a linear system of algebraic equations for the

current expansion coefficients. The equations were found,

however, to be asymptotically ill conditioned. By spectrally

decomposing the matrix representing the ill-conditioned

portion of these equations, and retaining only the major

eigenvalues, it was possible to obtain a close approximation

‘“to the currents without inverting a large ill-conditioned

matrix. The scattered fields were then readily obtained from

the currents. The new technique of using a low-rank matrix

spectral decomposition to solve the ordinarily intractable

equations obtained from the field-equivalence-theorem

waveguide decomposition facilitates the analysis of prob-

lems that resist ordinary methods of solution. The technique

was illustrated for the problem of scattering at a waveguide
slant, with results in agreement with other available solu-

tions to within 5 percent typically.
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The New Similarity Rules Applied to Argon
Microwave Noise Sources

RONALD E. GUENTZLER, SEN1ORMEMBER, IEEE

Abstract—It is showa that when the noise temperatures of argon
plasma noise generators, operated at fixed current/radiu;s ratios, are

plotted as l/T~ versus In (pr), the experimental data form a straight line.

INTRODUCTION

T

HE purposes of this paper are to show that the noise

temperatures of commercial argon noise sources agree

when a comparison is made based upon the new similarity

rules which require scaling at constant current/radius ratios,

and to show that the data obey a relationship of the form

l/T~ cc in (pr), which permits using a linear least squares

fit of experimental data.

HISTORICAL MICROWAVE DEVELOPMENTS

Beginning with the invention of the plasma noise source

by Mumford in 1949 [1], many workers measured the noise

temperatures of ‘plasmas. An extensive experimental

investigation and summary of previously published data

Manuscript received September27, 1976; revised December 15,1976.
The author k with the Department of Electrical Engineering, Ohio

Northern University, Ada, OH 45810

was made by Olson in 1968 [2]. His conclusions were that

the noise temperatures measured under various conditions

did not satisfactorily agree, and that they did not agree with

the von Engel and Steenbeck theoretical value [3, p. 86],

[4, p. 242].

Later, it was discovered that a close agreement appeared

to exist between his data and that taken by Denson and

Halford [5] when only data from wall-contained plasmas ‘

were considered; this was shown in [6, fig. 1]. Comparisons

between the noise temperatures obtained from different

radius tubes were always made by invoking the traditional

similarity rules [4, p. 288], [7, p. 209], [8, p. 59] which

required that the current be the same in all tubes, indepen-

dent of the radii.

THE NEW SIMILARITY RULES

In 1969 a new set of similarity laws requiring scaling at

constant current/radius ratios was formulated by Pfau et al.

[9]. Unfortunately, the new rules were not immediately

widely known, and they were “rediscovered” at least twice
since then. In 1975 it was shown in [10, fig. 4] that the new


