IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-25, No. 7, JULY 1977

REFERENCES

[1] A. H. Frey, “Auditory system response to radio frequency energy,”’
Aerospace Medicine, vol. 32, pp. 1140-1142, 1961.

[2] A. W. Guy, E. M. Taylor, B. Ashleman, and J. C. Lin, “Micro-
wave interaction with the auditory systems of humans and cats,”’
IEEE/MTT Symposium Digest, pp. 321-323, 1973.

[3] E. M. Taylor and B. T. Ashleman, “Analysis of the central nervous
involvement in the microwave auditory effect,”” Brain Research,
vol. 74, pp. 201-208, 1974,

[4] A. W. Guy, C. K. Chou, J. C. Lin, and D. Christensen, ‘“Micro-
wave induced acoustic effects in mammalian auditory systems and
physical materials,” Annals N.Y. Acad. Sciences, vol. 247, pp.
194-215, 1975.

[5] W.J. Rissman and C. A. Cain, “Microwave hearingin mammals,”
Proc. Nat. Elect. Conf., vol. 30, pp. 239-244, 1975.

[6] C. K. Chou, R. Galambos, A. W. Guy, and R. H. Lovely,
“Cochlea microphonics gencrated by microwave pulses,” J.
Microwave Power, vol. 10, pp. 361-367, 1975.

[71 A. H. Frey, “Himan audltory system response to modulated
cilgeg;romagnetlc energy,” J. Appl. Physiol., vol. 17, pp. 689-692,

[8] A. H. Frey and R. Messenger, Jr., “Human perception of illu-
mmatlon with pulsed ultra—h1gh frequency electromagnetic
energy,” Science, vol. 181, pp. 356-358, 1973.

[9] ANSI Standard, “Safety fevel of electromagnetic radiation with
respect to personnel,”” ANSI C95.1, 1974.

[10] H. C. Sommer and H. E. von Gierke, “Hearing sensations in
electric field,”” Aerospace Med., vol. 35, pp. 834-839, 1964.

[11] J. C. Sharp, H. M. Grove, and 0. P. Gandbhi, “Generatlon of
acoustic signals by pulsed microwave energy,”” IEEE Trans.
Microwave Theory Tech., vol. 22, pp. 583-584, 1974.

[12] K. R. Foster and E. D. Finch, “Microwave hearing: evidence for
thermoacoustical auditory stimulation by pulsed microwaves,”
Science, vol 185, pp. 256-258, 1974.

[13] J. C. Lin, “Microwave audltory effect—A comparison of some
possible transduction mechanisms,” J. Microwave Power, vol. 11,
pp. 77-81, 1976.

613

[14] T. E. Cooper and G. J. Trezek, “A probe technique for determin-
ing the thermal conductivity of tissue,”” J. Heat Transfer vol. 94,
pp. 133-138, 1972,

[15] G. T. Fallenstein, V. D. Hulce, and J. W. Melvin, “Dynamic
mechanical properties of human brain tissue,”” J. Biomechanics,
vol. 2, pp. 217-226, 1969.

[16] Y. C. Lee and S. H. Advani, “Transient response of a sphere to
torsional loading—A head injury model,”” Mathematical Bio-
science, vol. 6, pp. 473-486, 1970.

{171 J. 118 Stratton, Electromagnetic Theory. New York: McGraw-

ill, 1941 '

Hill, 1941.

[18] J. C. Lin, A. W. Guy, and C. C. Johnson, “Power deposition in a
spherical model of man exposed to 1-20 MHz electromagnetic
fields,” IEEE Trans. Microwave Theory Tech., vol. 21, pp. 791-797,

1973.

[19] C. C. Johnson and A. W. Guy, “Nonionizing electromagnetic
wave effects in biological materials and systems,” Proc. IEEE,
vol. 60, pp. 692-718, 1972.

[20] J. C. Lin, A. W. Guy, and G. H. Kraft, “Microwave selective
brain heating,” J. Microwapve Power, vol. 8, pp. 275-286, 1973.

[211 H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids, 2nd
Edition. London: Oxford Univ. Press, 1959.

[22] A. E. H. Love, A treaty on the mathematical theory of elasticity.
Cambridge, England, 1927.

[23] R. V. Churchill, Operational mathematics, 2nd edition. New
York: McGraw-Hill, 1958.

[24] E. Jahnke and F. Emde, Tables of functions, 4th edition. New
York: Dover, 1945.

[25] R. M. White, “Generation of elastic waves by transient surface
heating,” J. Appl. Phys., vol. 34, pp. 3559-3569, 1963.

26] L. S. Gournay, “Conversion of electromagnetic to acoustic
energy by surface heating,”” J. Acoust. Soc. Am., vol. 40, pp.
1322-1330, 1966.

[271 J. Zwislocki, “In search of the bone-conduction threshold in a
free sound ﬁeld » J. Acous. Soc. Amer., vol. 29, pp. 795-804,

1957.

[28] J. F. Corso, “Bone-conduction thresholds for sonic and ultrasonic
frequenc1es > J. Acous. Soc. Amer., vol. 35, pp. 1738-1743, 1963.

Rank Reduction of Ill-Conditioned Matrices
in Waveguide Junction Problems

DOUGLAS N. ZUCKERMAN, MEMBER, IEEE, AND PAUL DIAMENT, MEMBER, IEEE

Abstract—A new low-rank spectral expansion technique for solving
the ordinarily intractable matrix equations obtained from waveguide
field equivalence theorem decompositions is described. The method
facilitates the analysis of waveguide discontinuity problems that resist
ordinary methods of solution. The technique is illustrated for the problem
of scattering at a slant interface in a rectangular waveguide.

1. INTRODUCTION

HE integral equations, and the corresponding matrix

equations, that represent scattering at a waveguide

discontinuity often exﬁibit ill-conditioned behavior. This

results in computational difficulties as inversion of such

matrices is inaccurate for even large-order truncated versions

of the matrix. It is shown here, however, that it may be
\
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possible to take advantage of the often relatively low
effective rank of the ill-conditioned portion of the matrix
to overcome such difficnlties.

In the following, a typical problem, that of scattering
at a waveguide discontinuity, is solved by developing
equations that are exact but ill conditioned. First, field
equivalence theorems are used to reduce the structure to two
uniformly filled waveguides with equivalent electric and
magnetic current sheets at the discontinuity surface.
Integral equations for the current sheets are then derived,
using the null field condition in the two simpler waveguide
structures. By writing series expansions for the current
sheets, the integral equations are reduced to a system of
linear algebraic equations for the current expansion co-
efficients. These exact equations are asymptotically -ill
conditioned. By a low rank spectral decomposition of the
matrix representing the ill-conditioned portion of the
equations, it is possible to solve for the currents without
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Fig. 1. Top view of rectangular waveguide traversed by slanted

interface between two media.

inverting a large ill-conditioned- matrix, while not ignoring
high-order terms. The scattered fields are then readily
obtained from the currents: .

The new technique of matrix spectral expansion is illus-
trated .by solving the problem of scattering at a slant
interface in a rectangular waveguide. This problem has
recently received attention in the literature. Chow and Wu
[1] solve the problem by using a moment method with
mixed basis functions. De Jong and Offringa [2] use the

Green s function for the Wavegmde to derive  integral-

equa.,tlons for the fields at the interface. Kashyap [3] solves
for Jthe scattered fields by using a geometrical optics
approximation for the field on the interface. In the analysis
presented here the waveguide, structure shown in Fig. 1 is
decomposed, via field equivalence theorems, into two
simpler structures that are easier to analyze. A large-order
ill-conditioned matrix is obtained in the analysis. The
inversion of this matrix is reduced through spectral de-
composition to the inversion of a well-conditioned low-
order matrix.

II. THEORY

Fig. 1 shows a top view of a rectangular waveguide whose
broad dimension is traversed by a slanted interface between
two media. The structure is considered to be two waveguides
‘joined at the slanted plane. Each waveguide has its own co-
ordinate system, as shown. The structure has no variation
with respect to 3;. The niodes for the waveguides on each
side of the interface are expressed by E,,*, H,,*, where /is
the waveguide reglon number (1 of 2) and m is the mode
number.

The incident field is given. by ‘the modal amphtude
coefficients a,,, for waveguide 1 as

E, = Z,l AimEim (X1,1,21) n

while the scattered fields are given by the scattered modal
- amplitude coefficients b,, in both waveguides as

E;, = ;1 blﬁEtm_(xtaYIazz)- @

The solution of this reflection-transmission problem for the
scattering coefficients is considerably more complex than
that of excitation of the homogeneous waveguides by given
current sources, but the former can be reduced to the latter
by use of field equivalence theorems.

An exhaustive development of field equivalence theorems
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Fig.2. Equivalence theorem decomposition into two waveguides with
equivalent sources at the interface. ‘The waveguides can be -con-
sidered to be filled homogeneously.

appears in the literature [4]-[14]. Love’s equivalence
theorem [6], or Huygen’s principle [9]-[12], allows the
replacement of the discontinuity problem on-the left side of
Fig. 2 by the superposition of the pair of configura-
tions on the right side, much like Thevenin’s theorem
replaces portions of a network by equivalent sources. In
each of the pair, the fictitious electric and magnetic current
sheets on the interface, J and M, must be equal to the
discontinuities in the tangential fields, from the actual
fields on one side to zero on the other. A superposition of
these two configurations and fields clearly yields the original
one. Considering the equivalent current sheets in each’
problem on the right side of the figure as sources, they are
seen to radiate fields on one side that are the same as those
actually scattered by the discontinuity, but the two current
sheets also radiate a field that exactly cancels the total field
on the other side.

The importance of the null field regions of the two
structures on the right side lies in that they may be replaced
with any media whatsoever without affecting the radiated
fields. Specifically, the null field regions can be replaced
with the same media as on the other sides of the equivalent
currents, as shown in the figure. The solution for the fields
of the original structure has thus been made equivalent to
that for the two homogeneous waveguide problems shown,
except that the current sheets are not yet known. The sources
J and M are to be found from the condition that they
produce the null fields to one side in each problem. Once J
and M are known, the scattered fields may be found in
terms of them. _ ,

To derive equations for J and M it is sufficient to require
them to radiate null fields to the right of plane P, and to the
left of plane P,. This further simplification is valid because
there are no sources or discontinuities between the current
sheets and the planes P, or P,, so that the simplified
condition still assures a null field throughout the entire
region. The positions of P, and P, are not unique, but are
conveniently chosen outside the sourced region and trans-
versely across the waveguides so that the null field con-
dition is satisfied by requiring all modal amplitudes radiated
away from the currents into the null field regions to vanish
at these planes. These constraints represent an extended
boundary condition for the problem [15], [16].

The modal amplitudes generated by the equivalent
currents and by the incident field are readily obtained for
homogeneous waveguides by using the Lorentz reciprocity
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theorem [5]. Setting these amplitudes equal to zero yields
the following equations for the current sheets:
1

le s

szf[EZm (+J) — Hy,” - (+M)]dS =0  (3)

[E\,” - (=) - Hy,, - (—MJ s -+ ay, =0

where the integrations span the surface of discontinuity and
the normalizing modal power factor is given by the known
integrals of the normal modes over the waveguide cross
sections

P, = 2f e, % hy, - dS.
S

The scattered fields may be found once J and M are known
by again applying the Lorentz reciprocity theorem.
b =

m

- f [Epn* - (=d) = Hyp' - (—M)] dS

bom = — _f I:EZm+ (+J) - H2m+ (+M)] ds.

“4)
One way of handling the integral equations (3) for the
unknown current sheets J, M is to convert them to simul-
taneous linear equations for the coefficients of series
expansions for the unknowns. Upon selecting any suitable
set of basis functions J,(x), M,(x), series expansions may
be written for J and M. Substitution of these expansions
into (3) then yields a system of linear algebraic equations
for the current expansion coefficients j, and m,, as in

I = 3 i)
M) = 3 mM) ©)

The resultant system of linear algebraic equations for the

current expansion coefficients can be written in matrix -

form as
Ge = s ’ )

where ¢ comprises the current expansion coefficients, s has
the incident modal amplitude coefficients, and the infinite-
order matrix G can be partitioned as

G G
G = le lh] 7
[GZe G2h ( )

with components

G (mn) = f E\ ds ®)

Y le
Crn(mn) = f Hl"' Hin =M, 4 ©)
Gadmm = [ Eondo g (10)

S P2m
Go(m) = — | HomMuyg an

s P2m
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The unknown current coefficient vector ¢ is then given in'
terms of the incident modal amplitude vector s by

¢e=G s (12)

which formally requires the inversion of the infinite-order
matrix G.

The choice of current expansion functions in (5) is
arbitrary but affects the convergence of the infinite sums.
To arrive at a useful choice, note from the equivalent
problems in Fig. 2 that J and M will be proportional,

* respectively, to magnetic and electric fields tangential to the

discontinuity surface. For the purpose of illustrating the
solution technique, assume that only TE,, modes are
incident. Then since the structure has no y variation, only
TE,, modes will be scattered. The electric field is along y
and therefore M is along £. The magnetic field is in the
plane orthogonal to p and therefore J is along p. The
electric field vanishes at the waveguide walls at x = 0 and
x = afsin 6. It is thus reasonable to choose

M, (x) = sin [nr(x/a) sin @)% 13

where n is a positive integer. The magnetic field does not
vanish at the walls. However, the modes used to expand the
field do have a sinusoidal dependence along the discon-
tinuity. Thus choose

(14)

where n is a positive integer or zero. Note that this choice
of expansion functions is by no means the only choice, nor
necessarily the best choice. Another reasonable choice
might be the forward- and reverse-going modes of either or
both waveguides on each side of the discontinuity. The
analysis below demonstrates that the ill conditioning
that may arise from injudicious choices of expansion func-
tions can be dealt with effectively by rank reduction.
Substitution into the integrals for G yields

J(x) = cos [nr(x/a) sin 6]p

Gy (mn) = (—1)"e!®(aYy,) V2 L(mn,~ By, (15)
Gy(mn) = (—1)"e’®(Yy,/a)/2 - [sin O, (mn, — B1,)
= J(P1m/B1m) €08 0Ly (n,m,—By,)]  (16)
Gr(myn) = (aYp,)~ "PL(mn,+ Boym) an
Gomn) = —(Y,,/a) /% - [sin 61, (m,n,+ B,,)
+ J(PanlBow) 008 O, +Br)]  (13)

where Y}, is the modal admittance, ® = f,,a cot 0, p,, is
the cutoff wavenumber for the mth mode, and

afsin 0
Limn,p) = f sin [mn(x/a) sin 0]

0
- sin [nn(x/a) sin 0]e#*°>=? dx (19)

a/sin 0

sin [mn(x/a) sin 0]

I,(m,n,p) = f

0
- cos [nn(x/a) sin 0]e/P*cs? dx. (20)



616

The integrals may readily be evaluated in closed form, with
the following results:

Ii(m;n,p) = j(B/2) c0s ORyu[Spn™ — Swa™] D)
L(mn,p) = (z/24) sin OR,,,[T,,," + T.,™] (22)

where
Ryp = 1 = (= 1ymsrgitecsts (23)
Sun* = {[(m + n)(nfa) sin 0> — (Beos 62} " (24)
T™ = (m £ n)8,,*. (25)

The infinite-order matrix G remains to be inverted, but
truncated versions of this matrix are found to be ill con-
ditioned and require special treatment.

TII. TLL-CoNDITIONED MATRICES

Because of the behavior of the matrix elements for large
values of m or n, the matrix G is ill conditioned. This is
traceable to the properties of the integrals I, and I,. For
evanescent modes, f,, = —ju,, approaches —j(mn/a) for
large m. Except for the special case of § = 90°, the very
steeply rising exponential envelope which multiplies the
two sinusoids in the integrands prevents the rapid decay of
the integrals as m and # get larger and more separated from
each other. In addition, the value of I, ot I, will not vary
much within a small range of large m or n, since the ex-
ponential factor in the integrand counteracts the tendency
of the sinusoidal factors to be orthogonal.

To solve (6) exactly for the unknown current coefficient
vector, G must be inverted. The direct inversion of this
matrix, or of finite-order truncated versions of G, is not
practical, especially for large o;'de‘r, because of its ill
conditioning. However, as will be shown, a low-rank spectral
decomposition can be applied to G to avoid the inversion of
a large-order matrix.

We rearrange and partition G to rewrite Ge = s so as to
segregate low-order modes and expansion functions from
the presumably less important high-order ones, in the form

A Bl[p] _[r

& ol - (3]
not as in (7), which separated electric and magnetic com-
ponents for purposes of evaluating G. A4 is a square matrix
obtained by keeping only the first few low-order terms in
the expansion for both J and M and requiring that only the
first few modes of wavegiides 1 and 2 satisfy the null-field
condition at planes P; and P,. D is an infinite-order ill-
conditioned submatrix, corresponding to only high-order
modes and expansion functions; B relates low-order modes
to  high-order expansion functions, and vice versa for C.
The vector of current expansion coefficient ¢ is corre-
spondingly partitioned into p, containing the first few
coefficients, and ¢ for the higher order omes. The known
incident modal amplitude vectof s is partitioned as r and the
null vector since, for a single low-order incident mode, s and
also r have only one nonzero element. For more general
excitations, s may be partitioned into two nonzero parts

(26)
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and the solution readily extended to include the additional
sources.

One approach to the inversion problem is to ignore
higher order terms entirely. If G is severely truncated to
merely A, a crude solution p’ for the first few unknown

current expansion coefficients p is given by
p = A1 27

This is to be compared with the exact solution for all the
unknown current expansion coefficients, expressible in
terms of the partitions 4, B, C, D as

(A — BD1C) 'r
—~D"1C(4 — BD™1CY Y.

p=

q= (28)

If even an approximate inverse of submatrix D were
available, (28) would provide solutions for p, ¢ that do not
completely ignore the high-order modes, as does (27). An
obvious approach is to truncate D. However, since D is ill
conditioned, D~! cannot be readily evaluated, especially
when D is of high order. The desired improvement to the
crude solution given by (27) may nevertheless be obtained,
by spectrally decomposing D.

The spectral decomposition of D, truncated to an
N x N matrix, is given by [17]

) N
D= Y reu” (29) .
i=1

in terms of its eigenvalues 2 and orthonormal eigenvectors
e, i"; T denotes transposition. D is ill conditioned but not
singular. Now assume that a good approximation for D
is obtained by using only the first K largest eigenvalues in
the expansion (29), with K < N. K is to be the approximate
rank of D. If K were the exact rank of D, then K eigenvalues
would exactly represent D. Accordingly, an approximate
expréssion for D may be written as

D = fg

where the matrices f, g are formed from the eigenvectors

(30)

“of D:

f= [/1131,/1232" : "lKeK]

g = [uy,uy, - ug]".

€29)

The matrices fand g are N x K and K x N, respectively.
Within the approximation that ¢ is in the space spanned by
matrix f, substitution of (30) into (26) leads to the solution

[4 — Bf(af)~29C] 'r
~f(af)"*9C[4 — Bf(gf)"*¢C] *r.

This result accounts for the high-order modes, to the
extent that they can be expanded in the K retained eigen-
vectors of D.

Note that neither the ill-conditioned matrix D nor its
singular approximation fy needs to be inverted for this
solution. The problem of inverting the large-order matrix D
has been reduced to that of inverting a much lower order

i

p
q

(32)
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matrix gf, which is K x K instead of N x N and is not
ill conditioned.

There are numerous standard methods which may be
used to find the eigenvalues and eigenvectors of D needed
in the spectral decomposition. One method transforms D
to an upper Hessenberg matrix and then computes the
eigenvalues using the QR double-step procedure. The
eigenvectors are then found by performing inverse iteration
on the Hessenberg matrix [18]-[20]. There also exist
various iterative schemes which find only the first K largest
eigenvalues and corresponding eigenvectors [18], [21].

The quantity D™ = f(gf)”2g appearing in (32) is the
group inverse of D [22]. The group inverse is one of
several pseudoinverses that could be used in this context.
Another one is generated by the singular-value decomposi-
tion [22]-[24], which yields the minimum-norm least
squares inversion. It is closely related to the following
modification, designed to enhance the ratio of magnitudes
of the K retained eigenvalues to those of the N — K
neglected ones. If the second equation in (26) is pre-
multiplied by D*, where D* is the complex conjugate
transpose of D, there results

oe otol[7] - i)

Observe that D*D is a Hermitian matrix. This matrix
equation is of the same form as (26) and the same analysis
is applicable in solving for p and ¢. For Hermitian matrices
factored as in (30), with gf nonsingular, the group inverse
becomes the Moore-Penrose inverse. A solution to (33)
obtained using this inverse involves a minimum-norm least
square solution for ¢ in terms of p. This solution can be
shown to be unique. It always exists even though the
equation being solved may be inconsistent or have families
of solutions [22]-[24]. A disadvantage of this modification
is the reduced numerical accuracy of D*D compared to
that of D. This can be overcome by applying the singular-
value decomposition directly to the non-Hermitian matrix
D [25].

The accuracy of the solution is related to that of the
factorization approximation of D or D* D. In order to have
a good rank-K approximation for D or D* D, the first X
eigenvalues should have much larger magnitudes than the
N — K remaining ones. Even if this condition is met, the
approximate solution for p and ¢ may still be significantly
different from the exact, unattainable solution. This would
occur if D*Cp were to have significant components along
any of the N — K neglected eigenvectors of D™D, or
if r could not be resolved in the space spanned by 4 —
B(D* D)~ C in (32). However, the quantities ultimately to
be determined are the scattered mode amplitudes of (4).
Thus an examination of the scattered fields will indicate
whether the solution for the current expansion coefficients
has sufficient accuracy. The scattered fields should satisfy
basic physical principles such as power conservation and
reciprocity. A further discussion of the accuracy of the
procedure appears below in connection with some numerical
results.

(33)
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IV. NuMericAL RESULTS

The analysis of Sections II and III has been applied to
the waveguide slant discontinuity shown in Fig. 1, with
0 = 45°. The relative dielectric constants of the media
filling the waveguides on the left and right sides of the
discontinuity were taken as ¢, = 1andeg, = 3, respectively.
For a unit-amplitude TE, mode incident from z; = -0,
the scattered amplitudes of the propagating modes on both
sides of the discontinuity were computed for 1 < f/f, <
1.732, where f, is the TE,, cutoff frequency in that wave-
guide in which the TE,, mode is incident. At the highest
frequency considered, both the TE,, and TE,, modes
propagate to the right of the discontinuity, but only the
TE,, mode propagates to the left.

The solution procedure can be summarized as follows.
Based upon known solutions to the scattering problem,
truncating G in (6) to a 16 x 16 matrix is essentially equiv-
alent to leaving it of infinite order. Examination of the
portion of G corresponding to large m and » reveals that it
is approximately of rank 4; the first four eigenvalues of
D*D have much larger magnitudes than the remaining
ones. For example, for f/f, = 1.1, the four largest eigen-
values were 0.660, 0.539, 0.0284, and 0.018. The fifth
eigenvalue was 0.000843, and the remaining ones were all
much smaller than this one. These eigenvalues were com-
puted using an iterative technique [18]. If the approximation
is made that D™ D is exactly rank 4, then gf in (32) will be
4 x 4. In (26) or (33) A can conveniently be made 4 x 4,
so that the largest matrix that needs to be inverted is only
4 x 4,

The magnitudes of the reflected and transmitted pro-
pagating modes are given in Fig. 3. Fig. 4 shows the total
power carried by the scattered modes. Three sets of solu-
tions are shown in the figures. One set is for the severely
truncated equations represented by (27). Another set is for
the spectrally decomposed D* D matrix with solutions for
p and q as represented by (32). The third set of solutions is
the exact one obtained either from De Jong and Offringa
[2] or from (28) by directly inverting D. The results ob-
tained by inverting only 4 disagree with the correct ones by
as much as a factor of 2 and power conservation is violated
by up to 30 percent. However, the errors of the corrected
results, assuming D*D is rank 4, are of the order of 5
percent, no worse than 20 percent, and power conservation
is satisfied to within 4 percent. This represents a significant
improvement over the severely truncated case.

A limitation to the analysis occurs if the frequency
becomes too high or if the dielectric constant discontinuity
becomes too great. Then the equivalent current sheets are
expected to have many variations along the discontinuity
plane, and a large number of terms may be needed in the
expansions for the current sheets given by (5). It might
then be appropriate to choose a better set of current
expansion functions, or perhaps to use a geometrical optics
approximation for the currents.

The accuracy or reliability of the solution process is not
predictable in general but is subject to certain numerical
checks. Besides monitoring how well power conservation
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Fig. 3. (@ Magnitude of reflection coefficient for TE,, mode.
(b) Magnitude of transmission coefficient for TE , , mode. (c) Magni-
tude of transmission coefficient for TE,, mode. The exact solution is
given by a dotted line, the severely truncated solution by a dashed
line, and the low-rank correction by a solid line.

and reciprocity are satisfied, the convergence of the results
with increasing values of the reduced rank K and with
increasing order of the truncated matrix 4 can and should
be verified. Comparisons were made with the solutions
obtainable by direct inversion of large-order versions of
the G matrix. Typically, a rank-reduced 4 x 4 inversion
agreed with a direct inversion of a 16 x 16 matrix to
within 5 percent. It should be noted that, in accordance
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Fig. 4. Total scattered power as fraction of incident power. The exact
solution is given by a dotted line, the severely truncated solution by
a dashed line, and the low-rank correction by a solid line. !

with the variational principle that governs the scattering.
calculations [26], the results for the reflection and trans-
mission coefficients are more accurate than those for the
equivalent current sources.

V. SUMMARY

The problem of scattering at a waveguide discontinuity
was solved by using field equivalence theorems to reduce
the structure to two uniformly filled waveguides with
equivalent electric and magnetic current sheets at the dis-
continuity siirface. Integral equations for the current sheets
were derived using the null-field condition in the two
simpler homogeneous structures. By wriiing series ex-
pansions for the current sheets, the integral equations were
converted to a linear system of algebraic equations for the
current expansion coefficients. The equations were found,
however, to be asymptotically ill conditioned. By spectrally
decomposing the matrix representing the ill-conditioned
portion of these equations, and retaining only the major
eigenvalues, it was possible to obtain a close approximation

“to the currents without inverting a large ill-conditioned

matrix. The scattered fields were then readily obtained from
the currents. The new technique of using a low-rank matrix
spectral decomposition to solve the ordinarily intractable
equations obtained from the field-equivalence-theorem
waveguide decomposition facilitates the analysis of prob-
lems that resist ordinary methods of solution. The technique
was illustrated for the problem of scattering at a waveguide
slant, with results in agreement with other available solu-
tions to within 5 percent typically.

ACKNOWLEDGMENT

The authors wish to thank R. C. Ashenfelter and J.
Chambers for valuable discussions about numerical
solution techniques, E. T. Harkless and P. T. Hutchison for
their support, and R, H. T. Bates for his helpful comments.

REFERENCES

[11 Y. L. Chow and S. C. Wu, “A moment method with mixed basis
functions for scatterings by waveguide junctions,” IEEE Trans.
Microwave Theory Tech., vol. MTT-21, pp. 333-340, May 1973.



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-23, NO. 7, JuLY 1977

[2] G. De Jong and W. Offringa, “Reflection and transmission by a
slant interface between two media in a waveguide,” Inz. J.
Electron., vol. 34, pp. 453463, 1973,

3] S. C. Kashyap, “Slant dielectric interface discontinuity in a wave-
guide,”” IEEE Trans. Microwave Theory Tech., vol. MTT-23,
pp. 257-260, Feb. 1975.

[4] S. A. Schelkunoff, “Some equivalence theorems of electromag-
netics -and their application to radiation problems,’” Bell Syst.
Tech. J., vol. 15, pp. 92-112,71936.

[5]1 R. E. Collin, Foundations for Microwave Engineering. New York:
McGraw-Hill, 1966.

[6] A. E. H. Love, “The integration of the equations of propagation
of electric waves,’” Phil. Trans., Roy. Soc. London, ser. A, vol. 197,
pp. 145, 1901.

[71 J. A. Stratton and L. J. Chu, “Diffraction theory of electromag-
netic waves,” Phys. Rev., vol. 56, pp. 99-107, 1939.

[8] L. B. Felsen and N. Marcuvitz, “‘Slot coupling of rectangular and
spherical waveguides,” J. Appl. Phys., vol. 24, pp. 755770, 1953.

9] V. H. Rumsey, “Some new forms of Huygens’ principle,”” IEEE
Trans. Antennas Propagat., vol. AP-7, pp. S103-S116, Dec.
1959.

[10] M. Born and E. Wolf, Principles of Optics. Oxford: Pergamon
Press, 1970.

[11] S. A. Schelkunoff, “Kirchhofl’s formula, its vector analogue, and
other field equivalence theorems,”” Comm. Pure and Appl. Math.,
vol. 4, pp. 43-59, June 1951.

[12] S. A. Schelkunoff, “On diffraction and radiation of electro-
magnetic waves,”” Physical Rev., vol. 56, pp. 308-316, Aug. 15,

1939,

[13] J. D. Hunter and R, H. T. Bates, “Computation of scattering from
a class of bodies of unrestricted size,” J. Eng. Math., vol. 4,
pp. 119-128, Apr. 1970.

619

[14] ——, “Secondary diffraction from close edges on perfectly
conducting bodies,”” Int. J. Electron., vol. 32, pp. 321-333, 1972.

[15] K. A. Al-Badwaihy and J. L. Yen, “Extended boundary condition
integral equations for perfectly conducting and dielectric bodies:
Formulation and uniqueness,”” JEEE Trans. Antennas Propagat.,
vol. AP-23, pp. 546--551, July 1975.

[16] R. H. T. Bates, “Analytic constraints on electromagnetic field
computations,”” IEEE Trans. Microwave Theory Tech., voi. MTT-
23, pp. 605-623, Aug. 1975.

{171 L. A. Zadeh and C. A. Desoer, Linear System Theory. New
York: McGraw-Hill, 1963.

18] J. H. Wilkinson, The Algebraic Eigenvalue Problem. Oxford:
Clarendon Press, 1965,

[19] J. Grad and M. A. Brebner, “Algorithm 343, eigenvalues and
eigenvectors of a general real matrix,”” Comm. ACM, vol. 11,
pp. 820-826, Dec. 1968.

[20] H. D. Knoble, “Certification of algorithm 343, Comm. ACM,
vol. 13, pp. 122-124, Feb. 1970.

[21] P. W. Williams, Numerical Computation.
Noble, 1973.

[22] A. Ben-Israel and T. N, E, Greville, Generalized Inverses: Theory
and Applications. New York: Wiley, 1974.

[23] J. B. Rosen, “Minimum and basic solutions to singular linear
s%stzms,” J. Soc. Indust. Appl. Math., vol. 12, pp. 156-162, Mar.

New York: Barnes and

1964.

[24] G. H. Golub and C. Reinsch, “Singular value decomposition and
least squares,”” Numer. Math., vol. 14, pp. 403420, 1970.

[25] P. A. Businger and G. H. Golub, “Algorithm 358, singular value
decomposition of a complex matrix,” Comm. ACM, vol. 12,
pp. 564-565, Oct. 1969.

[26] M. Becker, The Principles and Applications of Variational Methods.
Cambridge: MIT Press, 1964.

The New Similarity Rules Applied to Argon
Microwave Noise Sources

RONALD E. GUENTZLER, SENIOR MEMBER, IEEE

Abstract—It is shown that when the noise temperatares of argon
plasma noise generators, operated at fixed current/radius ratios, are
plotted as 1/7y versus In (pr), the experimental data form a straight line.

INTRODUCTION

HE purposes of this paper are to show that the noise
temperatures of commercial argon noise sources agree
when a comparison is made based upon the new similarity
rules which require scaling at constant current/radius ratios,
and to show that the data obey a relationship of the form
1/Ty oc In (pr), which permits using a linear least squares
fit of experimental data.

HisToriCAL MICROWAVE DEVELOPMENTS

Beginning with the invention of the plasma noise source
by Mumford in 1949 [1], many workers measured the noise
temperatures of ‘plasmas. An extensive experimental
investigation and summary of previously published data
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was made by Olson in 1968 [2]. His conclusions were that
the noise temperatures measured under various conditions
did not satisfactorily agree, and that they did not agree with
the von Engel and Steenbeck theoretical value [3, p. 86],
[4, p. 242].

Later, it was discovered that a close agreement appeared
to exist between his data and that taken by Denson and
Halford [5] when only data from wall-contained plasmas
were considered; this was shown in [6, fig. 1]. Comparisons
between the noise temperatures obtained from different
radius tubes were always made by invoking the traditional
similarity rules [4, p. 288], [7, p. 209], [8, p. 59] which
required that the current be the same in all tubes, indepen-
dent of the radii.

THE NEwW SIMILARITY RULES

In 1969 a new set of similarity laws requiring scaling at
constant current/radius ratios was formulated by Pfau et al.
[9]. Unfortunately, the new rules were not immediately
widely known, and they were “rediscovered” at least twice
since then. In 1975 it was shown in [10, fig. 4] that the new



